CaLiGraph
Formats
RDF
N-Triples
N3/Turtle
JSON
XML
CSV
OData
Atom
JSON
Microdata
JSON
HTML
Embedded
JSON
Turtle
Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
LODmilla Browser
Sparql Endpoint
About:
clgr:
Birkhäuser
Property
Value
rdf:
type
owl:
NamedIndividual
Birkhäuser book
Book publishing company of Switzerland
Printing company
Publishing company established in 1879
Springer Science+Business Media imprint
Visual arts publishing company
rdfs:
label
Birkhäuser
owl:
sameAs
dbr:
Birkhäuser
prov:
wasDerivedFrom
http://en.wikipedia.org/wiki/Category:Birkh%C3%A4user_books
http://en.wikipedia.org/wiki/Category:Book_publishing_companies_of_Switzerland
http://en.wikipedia.org/wiki/Category:Printing_companies
http://en.wikipedia.org/wiki/Category:Printing_companies_by_country
http://en.wikipedia.org/wiki/Category:Publishing_companies_established_in_1879
http://en.wikipedia.org/wiki/Category:Springer_Science%2BBusiness_Media_imprints
http://en.wikipedia.org/wiki/Category:Visual_arts_publishing_companies
skos:
prefLabel
Birkhäuser
skos:
altLabel
''Birkhäuser Verlag''
Birkhauser
Birkhäuser Boston
Birkhäuser Boston, Inc.
Birkhäuser Boston, Ltd.
Birkhäuser Publishing Ltd
Birkhäuser Science
Birkhäuser Verlag
clgo:
country
Switzerland
clgo:
foundingYear
1879
clgo:
industry
Publishing
Mass media
Printing
clgo:
location
Switzerland
clgo:
parentCompany
Springer Science+Business Media
De Gruyter
clgo:
publisher
Birkhäuser
Springer Science+Business Media
is
owl:
hasValue
of
Restriction onProperty=publisher hasValue=Birkhäuser
is
clgo:
notableWork
of
Daniel Kaven
is
clgo:
publisher
of
Zeitschrift für Angewandte Mathematik und Physik
Birkhäuser
The Secret Guide to Computers
Insectes Sociaux
Infinity and the Mind
Modulor
Aequationes Mathematicae
Advances in Applied Clifford Algebras
Logica Universalis
Physics in Perspective
The Tower of Hanoi – Myths and Maths
Advances in Operator Theory
Scottish Book
Results in Mathematics
The Equidistribution of Lattice Shapes of Rings of Integers of Cubic, Quartic, and Quintic Number Fields
Why We Nap
Metric Structures for Riemannian and Non-Riemannian Spaces